If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-20x=84
We move all terms to the left:
x^2-20x-(84)=0
a = 1; b = -20; c = -84;
Δ = b2-4ac
Δ = -202-4·1·(-84)
Δ = 736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{736}=\sqrt{16*46}=\sqrt{16}*\sqrt{46}=4\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{46}}{2*1}=\frac{20-4\sqrt{46}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{46}}{2*1}=\frac{20+4\sqrt{46}}{2} $
| x2-20x=84 | | 6x^2–4x=10 | | 400+1/6x=2000 | | 3(8-3t)=5(-5-2) | | 27=6+w/3 | | -48=6(y-1) | | 3x+5x+140+250x2=2,700 | | 11v=9v+8 | | m+2/5=1/ | | 20-9.01=p | | x2+32x+240=0 | | -9-7=3y-21 | | 5x+3/7=x/7 | | 4x/7=-2 | | 5-10x+13x=11 | | 1/2-3c=9 | | 20+3.50+p=9.01 | | 6n=+5(1-6n)=2(1-13n)+13 | | 18x-7x=11 | | -5x–6=x–11 | | 3.50-p-20=9.01 | | -9u+27=2(u-3) | | 1/2z+6=3/2(z+6 | | 4.905t^2-5.6t+115=0 | | 3b+3=5b+8 | | 15x-41=10x+14 | | 4.905t^2-5t+115=0 | | 9r−3r=12 | | 7.2(x-3.5=-21.6 | | -4x-19=38 | | x=1/2-4 | | 36=-4w–5w |